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ABSTRACT 

Contagions – either pathogens spread through contact networks or 

societal memes spread through social networks – impact the 

occurrence and character of both epidemic and endemic diseases.  

While computational models explore disease parameters in the 

context of a given contact network, these models are always 

subject to the caveat that reality may not be consistent with the 

simplified assumptions regarding contact, contagion or network 

structure.  More - and more accurate - data on the contact 

dynamics between people and places could alleviate some 

uncertainties, and make models more robust tools for policy-

makers and researchers. Properly applied, consumer electronics 

can serve as a valuable source of this data.  Using smartphones as 

sensor platforms rather than personal communications devices, it 

is possible to record high fidelity information on a participant’s 

location, activity level, and contacts between both people and 

places.  This paper describes the design, architecture and a 

preliminary deployment of a general smartphone-based 

epidemiological data collection system.  The dataset, gathered 

over one month, contains over 45 million records related to the 

behavioral patterns of 39 participants.  We provide an initial 

analysis of aggregate level statistics to demonstrate the power and 

scope of the technique for capturing relevant data.  Demonstrating 

the potential for such data to inform decision-making, we further 

perform an agent-based simulation of a flu-like illness that uses 

the dataset to capture aspects of both person-person and 

environmental (place-person) transmission.  We demonstrate that 

the data collection is possible, valuable, and scalable and that the 

data can be leveraged to inform detailed models capturing more 

complex physical interactions than were previously feasible.   

Categories and Subject Descriptors 
J.3 Life and Medical Sciences 

General Terms 

Measurement, Experimentation, Human Factors, Verification. 

Keywords 

Sensor-based data collection, Human contact pattern, 

Epidemiological modeling. 

1. INTRODUCTION 
The dynamics of contagion spread have been studied in systems 

ranging from the stock market to YouTube video popularity.  

Because the fundamental data, stock prices and news items, or 

video names and number of views are digitally archived in the 

public domain, these systems are readily analyzed.  Contact 

dynamics in contagious diseases – and particularly respiratory 

infections – have not been as well studied because they primarily 

depend on fluctuating physical proximity networks, which are 

difficult to measure. Despite the availability of strong modeling 

approaches to evaluate health interventions, epidemiologists 

commonly lack sufficiently detailed empirical data to make strong 

predictions for the outcomes of interventions in systems whose 

evolution exhibits a strong dependence on contact dynamics, 

either between people or people and places. 

Despite the similar nomenclature, viral videos spread across 

different networks than viral pathogens.  Viral videos transit 

through a quasi-static social network, which is unlikely to change 

during the brief half-life of the video’s popularity.  Viral 

pathogens transmit through susceptible individuals being 

physically exposed to infectious carriers, usually other people, or 

environmental reservoirs of infection.  These contacts are 

stochastic [6, 14] and can be classified depending on the nature of 

the infection [26].  A better understanding of the dynamics of 

contact networks – and of their associated reservoirs – could lead 

to a better understanding of how pathogens transfer in epidemic 

spread and remain viable in endemic scenarios. 

A dynamic contact network is simply a mapping of the time a set 

of pairs of individuals are within certain proximity of each other.  

It is used to answer the question “was agent A in contact with 

agent B at time T?”  Time is important: a longer exposure time 

increases the chance of pathogen transmission [26] and the stage 

of the infection often changes the transmission hazard.  

Traditionally, contact dynamics were estimated by manual contact 

tracing or diary which confers great value for infections with long 

latent periods (such as tuberculosis), or infections with clearly 

defined contact events (such as most sexually transmitted 

infections), but of insufficient resolution for more rapid and 

virulent diseases such as SARS or H1N1 flu. 

In the past decade, researchers in communications and zoology 

have been using automated contact tracing systems to better 

understand the role of human mobility in communications systems 

[19, 30] or the interaction patterns of animals [28].  However, it 

was not until very recently that this was applied to the field of 

human health [11, 26]. Automated contact tracing of populations 

in epidemiological modeling and human health is in its infancy, 

and many areas remain unexplored, such as the role of contact 

with sensed locations in the spread of disease, the sampling time 
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scale required, or the role of multisensory data to the cross-

validation of conclusions from the sensed data. 

In this paper we describe and validate a novel large-scale data 

collection system, which provides minute-level resolution 

measurements of participants’ activity, location, person-person, 

and person-place contacts.  We illustrate heterogeneities in 

contact patterns through aggregate data analysis and demonstrate 

the utility of model-dataset integration by combining contact 

dynamics data and agent-based simulations. 

The dataset - called the Saskatchewan Human Ethology Dataset 1 

(SHED1) - was collected over a period of 5 weeks with 39 

participants and includes accelerometer, GPS, Bluetooth, WiFi 

and battery state information, culminating in over 45 million 

sensor records and hundreds of millions of individual 

measurements.  We provide an initial analysis of this data in three 

results sections.  Section 2 provides a literature review.  The 

system architecture, data collection and simulation setup are 

described in Section 3.  Section 4.1 gives an overview of the 

resulting contact dynamics in aggregate form.  Section 4.2 

provides analysis and visualizations on the interaction between 

contact dynamics of participants and the places they visit.  Section 

4.3 presents the results of an agent-based simulation that used the 

gathered contact dynamics as a temporal contact pattern and was 

studied using a Monte Carlo ensemble.    Discussion, future work 

and conclusions are outlined in Section 5, 6, and 7, respectively. 

2. RELATED WORK 
Since the inception of mathematical epidemiology, human 

infection transmission models have provided a control to the 

representation of person-person contact processes. In recent 

decades, research has highlighted the importance of population 

heterogeneity and network structure in shaping outbreak 

emergence and progression, and endemic persistence of pathogens 

[13, 24].  Researchers noted that pathogens for whom population 

extinction would have been anticipated have managed to survive – 

and even flourish – in core regions of the network [13].  Research 

also identified the tremendous levels of heterogeneity seen in 

human contact patterns [27].  

Insight into the importance of heterogeneity and network structure 

on pathogen transmission and survival has elevated the 

attractiveness of individual-level models, explicitly depicting 

static or dynamic contact networks, characterizing the impact of 

network structure on infection spread, and evaluating network-

informed interventions. Despite recent contributions suggesting 

both the existence of great heterogeneity in duration [11] and the 

importance of such contact duration for infection transmission 

[26, 29], there remains a relative paucity of data on contact 

duration, largely due to the difficulty of collecting such 

information [24].  Sensor-based approaches have been identified 

as a significant opportunity for collecting this information [26, 

24] 

Many human pathogens impose a risk of transmission not only on 

a person-person basis, but also through the environment.  

Environmental reservoirs vary from air within an enclosed space, 

to surfaces, and aquatic environments.  Compared to the heavy 

emphasis of mathematical epidemiology models on understanding 

the role of carriers, the role of place-based environmental 

reservoirs has been the focus of less modeling effort.  In the social 

network community, place is recognized as informing 

understanding of the context and significance of contact patterns 

[35, 18, 17].   While place has featured prominently in partial-

differential equation models for characterizing geographic spread 

of illnesses such as rabies [2, 3], West Nile Virus [2] and 

pandemic flu [33] as well as in geographically rooted agent-based 

models [5], and while environmental reservoirs are more 

commonly represented for models of some zoonoses [10, 22], 

relatively few human health models examine the impact of 

environmental reservoirs.  Most such models concentrate on 

highly aggregated representation of a single aquatic environment 

[4, 25, 15], but others have portrayed highly aggregate 

characterizations of alternative environments, such as surfaces in 

health-care facilities [21]. As with person-person contact, the 

absence of detailed contact patterns (here, between people and 

places) has proven a major barrier for the construction of more 

detailed models. 

While epidemiologists have found a great deal of utility in quasi-

static contact networks, other disciplines have investigated human 

contact dynamics for communications purposes.  Reality Mining 

[6] instrumented students and staff at MIT to study their inter-

contact dynamics.  They found that contact duration tended to 

follow a truncated power law distribution.  Others have employed 

similar techniques to investigate the utility of Delay Tolerant [8] 

or Pocket Switched Networks (DTN, PSN) [14], a networking 

paradigm which routes low priority messages through contact 

between mobile agents rather than over fixed network 

infrastructure.  Their characterization of human contact patterns 

was broadly consistent with Reality Mining, and added 

confirmatory analysis.  Processes in PSN–like networks exhibit 

patterns similar to pathogen propagation in that they transit from 

person to person based on contact frequency and duration.  

However, PSNs route messages to minimize power consumption 

and maximize delivery ratio, whereas pathogens behave in a more 

stochastic manner. More recently, authors have examined the 

impact of location in DTN routing [12] leveraging datasets that 

contained location information. This research is partially enabled 

by datasets which incorporate location, such as the original 

Reality Mining [6], which employ cellular tower occupancy as a 

proxy for position, and [19] which records GPS positions for 

various subjects within single 24 hour periods.  Neither of these 

methodologies is particularly suitable for the study of 

environmental reservoirs for contagious disease, however, 

because the resolution of cellular tower localization is overly 

coarse, and GPS is only reliable outdoors. 

Quasi-static assumptions regarding contact dynamics are suitable 

for infections which move with very slow contagion dynamics, 

but even systems with easily identifiable distinct contacts such as 

most sexually transmitted diseases have been demonstrated to be 

strongly affected by network dynamics [23].  For infections with 

greater virulence and shorter duration, quasi-static analysis may 

not be adequate [26].  However, researchers have recently 

leveraged automated contact tracing as described in the DTN 

literature with simple agent based models [6, 12].  The work in 

[26] represents an important step forward in the integration of 

detailed micro-contact data and epidemiological modeling of 

contagious disease.  However, it is only a first step and has a 

number of shortcomings, particularly due to the nature of the 

micro-contact data gathered and the choice of infectious disease 

model.  The dataset collected contained over 800 participants – 

larger than most publish micro-contact data sets (e.g. [6, 11]) – 

but only over a single day, which is an exceptionally short 

duration.  A generic infectious disease model was then applied to 

the dataset over and over, as the same contacts replayed day after 

day.  This substantial simplification has validity for the population 
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under study: high-school students and staff, a population also of 

particular epidemiological interest, but also a population that 

generalizes poorly.  Additionally, this research did not consider 

the impact of place, likely because the entire study took place 

within a single institution with regimented location-occupancy for 

almost all participants.  We address both the shortcoming of time 

and the neglect of place in the dataset presented here, but sacrifice 

number of participants as a tradeoff. 

3. EXPERIMENTAL SETUP 

3.1 System Design 
SHED1’s data acquisition backbone, iEpi, is a custom Android 

program written in the Java language to provide extensible sensor 

data acquisition components, stable encryption and opportunistic 

uploading.  iEpi has been designed to allow ease of code reuse 

and extensibility as described below, but here we only provide a 

brief description of its major components. 

3.1.1 Major System Components 
iEpi can be thought of as a system composed of five parts: tasks, 

streams, data loggers, data senders, and servers. Tasks are pieces 

of work or duties to be carried out periodically, including 

sampling data and initiating dialogues with servers. Streams are 

feeds gathering data from on-device sensors or data derived from 

them. In this study, we used five streams: accelerometer, 

Bluetooth scans, WiFi scans, GPS, and battery status.  More 

complex streams capable of producing data derived from several 

sources are also possible but not currently implemented. Data 

loggers encrypt and store data collected by tasks in on-device 

nonvolatile storage. Data senders take stored data and transmit it 

to servers. Servers decrypt, sort, combine, and store data for later 

use by researchers. 

3.1.2 High Level System Operations 
At device boot, iEpi automatically starts and creates tasks based 

on expected system behavior defined in a configuration file.  Each 

task then performs their respective duties at the frequency and 

duration specified in the file. Tasks that collect data pass it to a 

data logger, which encrypts and stores the data in non-volatile 

storage. Tasks that control data transmission periodically invoke a 

data sender, which sends stored data opportunistically to the 

indicated server(s) via WiFi.  In the interest of preserving battery 

life, between bouts of work, the device is permitted to enter a 

power-saving mode. This behavior does not interrupt normal 

device operation, only suspending the processor when work is not 

scheduled. Figure 1 depicts the iEpi architecture. 

3.1.3 iEpi Configuration 
As previously mentioned, iEpi is configurable; researchers can 

specify a variety of tasks to be performed, how often to perform 

them, and for what duration to perform them. Currently, iEpi 

operates on a simple duty cycle model.  Researchers specify the 

length of a duty cycle (in this case, 5 minutes) over which all 

measurements will be repeated.  Within each duty cycle, each 

sensor collects data for a duration specified in the configuration 

file, which is less than the overall duty cycle.  This schema allows 

researchers to determine the amount and frequency of data to 

collect for each stream.   

 

3.1.4 Data Security 
iEpi has the potential to record highly sensitive participant data. It 

is  therefore  important  to  ensure  that participant data is virtually 

unreadable on-device and during transit to servers. Data is 

encrypted while on the phone, and only sent across secure 

wireless links.  Data collection can be partially disabled by the 

user via a “snooze button,” which can be accessed by opening the 

application. The button causes iEpi to redact all data but 

timestamp and participant ID helping to differentiate iEpi failure 

from a participant’s desire for privacy. 

3.2 Experimental Design  
After receiving approval from our Research Ethics Board and 

employing the software described in the previous section, we ran 

a pilot deployment for 5 weeks during April and May of 2011 

using Android DevPhone 2s running a custom version of the 

Android 2.1 operating system.  Forty participants were recruited 

from the Computer Science Department, consisting of graduate 

students from several laboratories, technical staff and 

administrative staff.  One participant withdrew within the first 

week, leaving 39 participants who completed the entire study.  

Results are presented here for these 39 participants.  Phones were 

deployed incrementally over 3 days leading up to the experiment.  

Participants met one-on-one with at least one study organizer, and 

were walked through the experimental protocols and use of the 

phone, filled out consent forms, and had the opportunity to ask 

questions.  Participants were requested to carry the phones with 

them at all times during the day, unless the phone was low on 

batteries, in which event they were requested to plug it into a 

computer near them.  Participants were also requested to take the 

phone home with them at night, and to initiate charging just 

before going to bed.  Participants were allowed to use the Android 

phone as their primary phone if they had a compatible SIM card.  

The phones were also pre-loaded with pay-as-you-go data plans 

with sufficient value for unlimited use over the entire study. 

The phone was programmed to collect data in bursts every 5 

minutes (defined duty cycle length) to manage data size and 

battery life.  Every duty cycle, the phone logged 1 minute of 

accelerometer records, 1 minute of Bluetooth contacts, 3 seconds 

of  WiFi  contacts  and  10  records  of battery state.  GPS records  

Figure  1. Simplified iEpi architecture and operations 
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Table 1. Data recorded by each sensor 

Parameter Variables recorded 

ALL Participant ID, time stamp 

GPS Latitude, longitude, velocity, accuracy 

Acceleration Acceleration in x, y, z 

BlueTooth MAC address, signal strength 

WiFi BSSID (MAC address), SSID (Network Name), 

signal strength, frequency, security protocol 

Battery Battery level, plugged status, battery status. 

 

were collected for 2 minutes, but given that the GPS required 

significant time to acquire satellites to achieve position lock, the 

first   approximately   90   seconds   did   not   contain   data.   The 

information recorded by each sensor is summarized in Table 1.  

Values in the “ALL” row correspond to common variables. 

Data was opportunistically uploaded by phones over the 

university’s secure wireless network whenever the phone had 

accumulated at least 3000 records.  Data on the server was 

accumulated in flat files and parsed at regular intervals and 

inserted into a MySQL database.  Overall compliance was 

monitored by examining the number of records returned by 

participants.  Participants with low compliance and those whom 

their return rate dropped significantly were notified through email. 

At the conclusion of the study, participants returned their phones 

and filled out a questionnaire, which contained basic demographic 

information, information about perceived compliance and 

lab/office affiliations.  No health data was collected in the survey 

as a condition of our ethics approval. 

3.3 Simulation Setup 
The collected dataset captures the high-resolution behavior 

patterns of participants during the experiment period. We used 

part of the dataset which represented participants contact patterns 

(using Bluetooth proximity) and their location information (based 

on WiFi-Router connectivity) to simulate the spread of a flu-like 

infection through proximity contacts and location-specific 

environmental reservoirs. Note that the transmission of infection 

simulated here does not reflect an actual pathogen, and the 

parameters are mainly for demonstration. 

The simulated model classified each individual in the sample 

population into one of six states: Susceptible, Latent, 

Asymptomatically Infectious, Symptomatic Infectious, 

Symptomatic Non-Infectious, and Recovered.  All of the agents in 

the model started in the Susceptible state.  A susceptible 

individual could contract the infection either from exogenous or 

endogenous sources.  Exogenous sources are defined as the 

population outside the study who were in contact with SHED1 

participants and could transmit the infection to the monitored 

individuals.  Assuming that 0.03% of population receive the 

infection per week during a pandemic [9], the exogenous infection 

probability per person per time unit (duty cycle) would be set to 

0.0003. The endogenous source of infections is divided in two 

parts: contact with other study participants in an infectious state, 

or contact with a location-specific reservoir of infection. 

Receiving the infection from either exogenous or endogenous 

sources transitions a susceptible agent to the latent state.  Before 

starting the Latent period, the model computed the duration for 

each of the subsequent four stages of illness (i.e. Latent, 

Asymptomatically Infectious, Symptomatic Infectious, and 

Symptomatic Non-Infectious). In determining these durations, we 

sought to reproduce the observed variability in H1N1 progression 

by computing these durations using parameters from [32].  

Each infected agent experienced the four illness states 

sequentially with the passage of time.  A person in the 

Asymptomatically Infectious or Symptomatic Infectious state was 

considered infective, and could infect other susceptible adjacent 

individuals and their current location.  The probability of 

infecting a susceptible individual in proximity per duty cycle was 

set to 0.00730, which is aligned with R0 reported in [32]. Unlike 

person-person infection transmission, an infective would spread 

pathogen to a location according to contagious events. An 

infective caused a contagious event on average once every three 

duty cycles. Each contagious event was modeled as increasing the 

level of pathogen in the current location of the infective by an 

amount sufficient to have a per-duty-cycle risk of transmission 

from the location to any susceptible visiting that location of 

0.021. This increase was to be designed sufficiently large that the 

cumulative chance of a given susceptible becoming infected by an 

infectious event strictly after it has occurred was equal to the 

chance of a person present at the time of the being infected 

through the event itself.  This per-duty-cycle probability could be 

saturated at 1 due to a high rate of contagious events. Infectivity 

of a location decreased exponentially and disappeared after 12 

duty cycles (1 hour), assuming no additional contagious events 

occurred in this period. 

We implemented the model in Network-Simulator 3, a discrete 

event simulator, using 39 agents and simulation period of 9792 

duty cycles. Each agent represented one of the study participants, 

and participants’ Bluetooth contacts and WiFi-based location 

information for each duty cycle was imported from SHED1 

dataset to the related agent prior to the simulation. Three different 

scenarios were simulated: transmitting infection only via person-

person contact, only via person-location contact, and both. Each 

scenario simulated using 100,000 Monte-Carlo realizations. 

4. RESULTS 
The kind of dataset described in this paper can be used to infer 

many aspects of human behavior which have an impact on health.  

In this manuscript we focus on the relationship between human-

human contact and place.  The role of contact dynamics – and, in 

particular, contact duration – is particularly important for the 

spread of communicable disease [26].  Location also plays an 

important role in the spread of contagious disease, both as a proxy 

for locales where person-person contact is likely, in norm-setting 

[20], and by hosting pathogen reservoirs, through mechanisms 

such as contaminated surfaces or suspended aerosols [34].  High-

fidelity contact data of the sort collected in this study can be used 

to derive more accurate contact parameters for aggregate models, 

provide direct empirical insight into the behavior of the monitored 

population and as a source for aggregate models’ mixing matrixes 

and dynamic contact patterns in agent-based models. 

4.1 Aggregate Data Properties  
With 45 million individual records and hundreds of millions of 

individual data points, the full implications of rich datasets like 

SHED1 can be difficult to assess.  Aggregate measures can 

provide simple snapshots to represent the data as values, 

distributions or functional parameters.  These values can represent 

broad  trends  in  the  data  and  can  be  employed as direct health  
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Table 2. Aggregate information on SHED1 dataset 

Parameter Value 

Total GPS records 1,348,024 

Total WiFi records 9,285,061 

Unique WiFi routers 20,069 

Unique WiFi locations 34,048 

Total BT records 1,630,519 

Unique BT MACs 9934 

Contacts (duty cycle) between participants 74056 

Contacts (duty cycle) with non-participant mobile 

BT devices  

511038 

 

measures or as the input to population level models.  In this 

section we present measures of overall dataset scope, particularly 

with respect to the person and place contact data contained in the 

WiFi and Bluetooth tables.  Table 2 contains simple aggregate 

data relating to the scope of the dataset. 

In Table 2, a WiFi location is distinguished by a unique 

combination of routers visible to a participant with RSSI values of 

at least -80 dB.  A participant contact is registered when one 

participant’s phone discovers another with a MAC address in the 

list of participant devices.  A non-participant contact is recorded 

when a participant comes into contact with a node which is 

discoverable, has a device class of cellular or smartphone and is 

not in the MAC address list of participant devices.  It is possible 

for multiple contacts to happen in a single timeslot with a single 

node, if other nodes observe it simultaneously.  The distribution 

of contact count is shown in Figure 3.  

Participants were significantly more likely to have seen someone a 

very few number of times, and most of those isolated contacts 

were with non-participant devices.  Because we selected 

participants to be from the same department, they had a 

reasonably high chance of contacting one another.  The minimum 

recorded contact between any participant pair was 311 duty 

cycles.  There is a chance the data might be biased due to our 

measurement of contacts with only discoverable non-participant 

devices for practical and ethical reasons.  Our data only indicates 

that a device was discoverable at the specific point in time; it does 

not imply that the non-participant device was discoverable for the 

other time slots in the study. Nevertheless, even excluding devices 

seen at most in 5 different timeslots, the heavy tail remains, and 

the overall nature of the contacts remains the same. 

Having established the extent of contact, it is logical to examine 

the duration of those contacts.  This is often reported as CCDFs of 

contact duration [6, 11] corresponding to the amount of time 

nodes are likely to spend together.  Figure 3 shows contact 

duration CCDF, for contacts between participants and contacts 

between all mobile nodes.  Similar analysis of two other contact 

datasets, which captured contacts only between participants are 

provided for reference as well [14, 11]. 

Each of the contact duration CCDFs follows the general trend of a 

power law followed by an exponential roll-off, although the roll-

off is less pronounced in the SHED1- All Mobile Devices.  An 

interesting aspect of the CCDFs is the divergence of the all 

contacts line from all three of the other datasets.  This suggests an 

impact of participant selection bias on the contact dynamics of the  

 

Figure  2: Number of contacts recorded for each mobile node 

 

Figure  3. CCDF of BT contact durations. CCDF for contacts 

from two other studies are also provided for comparison. 

network.  The Haggle dataset was captured over several days at an 

academic  conference.   The  Flunet  and  SHED1   datasets   were 

gathered at the same university, but 18 months apart. 

Another fundamental parameter is the overall reliability of the 

data.  Data reliability is much more difficult to measure in the 

previous data collection methods such as Flunet [11] and Haggle 

[14] because the data was acquired using a simple sensor system 

intended for industrial use.  However, we can leverage the battery 

data and auto-synchronizing clock to determine how reliable each 

participant was, even on a daily basis.  Figure 4 show the amount 

of time the phone was on with battery (and more likely with the 

participant) with red, on while connected to a computer (likely 

proximate to the participant most of the time if at work) with 

green, or plugged into a wall (less likely to be close to the 

participant) with blue.  The sum of these parameters is the total on 

time of the phone and a proxy for participant compliance. 

Overall compliance was moderate, averaging 54% for all battery 

states.  The highest compliance participant reported 85% of the 

possible data over the study period, and the participant with 

lowest compliance reported approximately 30% of the possible 

data.  Another notable exception was participant 11, who left his 

phone plugged into a computer most of the time, even at night, 

suggesting that the phone was a better proxy for his desk than 

himself.  Nevertheless, the scope and richness of the data obtained 

are more than sufficient for the initial analysis presented here, as a 

demonstration of principle, and the additional richness provided 

by orthogonal sensor measurements of compliance provides us 

with a greater degree of certainty as to what the data is describing.   
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Figure  4. Participants’ compliance, grouped by phone’s 

plugged status. 

 

Figure  5. Mobility pattern of a participant during the study. 

Red shows higher and blue shows lower number of samples. 

In addition to WiFi-based locations, GPS records also can 

represent the location information in the SHED1 dataset, 

particularly in outdoor environments where the density of WiFi 

routers are lower. Figure 5 shows the density of GPS records from 

a sample participant during the experiment. Colors closer to red 

indicate higher number of samples, and colors closer to blue are 

related lower number of samples. Although a few visits are 

recorded to most areas of the city, two primary locations, the 

commute path, and some favorite shopping places are easily 

identifiable, allowing us to infer the participant’s mobility pattern. 

4.2 Network analysis 
To explore relationships connecting people and places within the 

study, we performed a variety of network analyses, each 

accompanied by network visualizations.   

Figure 6 shows a network reflecting the relationship over work-

week (Mon. to Fri.) between participants and non-participants 

(cellphone or smart-phone mobile Bluetooth devices).  Within this 

network, a participant was considered connected to another 

person (a Bluetooth device involved in the study or not) if and 

only if there was some timeslot during that work-week in which 

 

Figure  6. Network involving participants (black) and mobile 

Bluetooth devices (grey) 

the participant detected that device with a signal strength of at least -80 

dB.  The network is characterized by a strong core of participants, and 

“fans” of their external or stochastic contacts.  While this is an 

intriguing phenomenon, it could be a sampling artifact.  (If the entire 

city were telemetered or if the study was run for a longer time, the fans 

might become webs).  However, it does suggest that there are 

heterogeneous risks for endogenous infection, an interesting topic for 

further study. 

Figure 7 shows a visualization of a subset of the network where circles 

represent WiFi locations over the entire study. Within the figure, the 

circle associated with each place is sized such that the area is 

proportional to the number distinct non-study mobile devices seen per 

hour at that location, and the color associated with a given node is 

progressively brighter according to the cumulative number of distinct 

non-study mobile devices seen at that location throughout the study.  

As examined in the simulation (Section 4.3), the WiFi locations in the 

networks depicted here are of importance to spread of infection not 

only as the context for person-to-person transmission of infection, but 

also as pathogen reservoirs.  For example, a place node with high 

temporal rates of seeing new individuals could be a highly-travelled 

location in which environmental reservoirs could be built up and 

maintained by traffic.  A place node with a large cumulative number of 

observed non-study mobile devices suggests that participants may 

have remained at that location for a substantial amount of time, 

exposing them to higher cumulative risk infection from other 

individuals or environmental reservoirs.  The capacity to collect 

information on contacts with and locations of those outside the 

participant population can lower degree of bias imposed by participant 

selection and help to cross-validate observations of behavior. 

Figure 8 depicts a different form of WiFi device network, one which 

depicts only WiFi devices over a given interval of time.  A pair of 

WiFi devices is considered connected in the network over that interval 

if there was at least one time slot during that interval in which a 

particular participant detected both devices with RSSI strength levels 

of -80 or stronger.  Nodes colored in blue are known through their 

SSID to be affiliated with one of 4 standard University of 

Saskatchewan networks.  The centrally located subset of the network 

shown in the figure includes primarily nodes within the city of 

Saskatoon, but others as well.  For example, the isolated component 

located towards the top of Figure 8 appears to consist of a variety of 

WiFi devices located in Edmonton, Alberta – a city approximately 5 

hours driving distance from Saskatoon, which was visited by at least 

one  participant  during  the  study.   The  capacity to understand place- 
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Figure  7. Network of person-place (distinct devices) contacts 

(squares represent participants, and circles represent places) 

 

Figure  8. Structure of proximity network of WiFi devices 

 

place connectivity raises important potential for richer epidemiologic 

analyses, such as those explored in Section 4.3. 

 

4.3 Simulation Results 
To demonstrate how the behavioral patterns recorded in the 

dataset can be used in pathogen transmission models, we focused 

on participants’ locations and contacts data in SHED1 dataset, 

and used them in an infection transmission model. We studied the 

effect  of  location  and  proximal  contacts,  both  separately  and  

 

Figure  9. Number of endogenous infections per node for each 

scenario 

 

Figure  10. Number of transmitted infections per location. 

 

Figure  11. Number of person-person infection transmissions 

happened at each location where infection occurred. 

 

combined, in three different scenarios. Each scenario simulated 

for 100,000 Monte-Carlo realizations. In each realization, the 

agents followed the same contact sequence and location 

movement, while the stochastics associated with infection 

progression, duration, and transmission changed.  

The attack rate for the first scenario, where infection transmission 

could happen both via people and environmental reservoirs, was 

0.0115. This metric for the second scenario, where infection only 

could transfer via people, was 0.0098 and for the third scenario, 

where the infection only could happen through the reservoirs, was 

0.0016. The substantially lower attack rate value in third scenario 

partly could be due to the short life-cycle of the pathogens in the 

environment (12 duty cycles, or 1 hour), and the exponential 

decay that occurs during that time.  Clearly the assumptions 

underlying the model will affect the output; different relative 

hazards for person-person and person-place will result in different 
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simulated health outcomes, but the parameters here are broadly 

consistent with a flu-like illness and serve as a proof-of-concept 

for the technique. 

Figure 9 shows the number of endogenous infections received by 

each participant, during all realizations for each scenario. This 

graph also emphasizes the role of person-to-person contacts in 

pathogen transmission in comparison with shared location, as 

both scenarios with person-person infection transmission yielded 

considerably higher number of endogenous infections. 

We used 34,048 unique locations based on scanned WiFi-Routers 

for the simulation, but not all the locations have equal importance 

in transmitting the infection. In all 200,000 realizations where 

place-person transmission was possible (first and third scenarios), 

only 147 locations infected at least one susceptible. Figure 10 

shows the number of transmitted infections in each of these 147 

locations. As it can be seen, a few locations infected more than 

500 susceptibles (aggregated over all realizations), while the 

majority of locations caused less than 50 infections.  

To understand the role of location in person-person infection 

transmission, we measured the number of endogenous infections 

which happened due to proximity of two people at each location. 

Simulation results showed that at least one person-person 

infection happened in 8% of the locations. Figure 11 shows the 

number of person-person transmissions occuring at each location, 

omitting those locations with no transmission. A behavior similar 

to Figure 10 can be seen here as well. A considerable number of 

infection transmissions happened at a small set of locations, while 

less than 10 transmission happened in a majority of the locations. 

In aggregate, our simulation results demonstrate that place plays 

an important role in disease transmission even of short-lived 

environmental pathogens.  However, this role is not primarily 

through the transmissions of pathogens via environmental 

reservoirs, but through common locals where transmission can 

take place.  Identifying places with either a high degree of mixing 

or longer contact durations [26] could help reduce the spread of 

disease by prioritizing target areas for public health information 

resources. 

5. DISCUSSION  
The work we have described covers aspects of data collection, 

analysis and simulation.  We are the first to our knowledge to 

collect multivariate data of this scope for health modeling and 

analysis, and the first to apply agent-based techniques and micro-

contact data to the spread of pathogens from both agent-agent 

transmissions, and agent-environment transmissions.  This paper 

makes specific contributions to each area, but perhaps more 

importantly demonstrates an overall integrated approach covering 

all aspects of the health-centered dynamic contact network 

analysis, from the software design of the tool through to agent-

based analysis.  We feel that this vertically integrated approach is 

appropriate for the study of contact network dynamics. 

Both the analysis and the simulations focused on the relationship 

between people and places, and the associated impact on 

infectious disease.  Our analysis showed that people had contact 

with a subset of common places and associates, but also had 

transient contact with a staggering number of other people and 

places. Our simulations indicate that people were more likely to 

receive infections from people or places in which they more 

commonly reside and where others more commonly reside, 

echoing the notion of strength from [26].  

While the analysis and simulation work reported here have value 

unto themselves, the largest contribution of the paper is the 

overall process of orthogonal behavioral and health data 

collection, simulation and analysis.  We have only begun to tap 

the potential of the dataset we have already collected.  We have 

not addressed measures of activity in this paper, and have only 

mentioned the potential of GPS data.  This data can be leveraged 

to provide greater precision in data description, by cross-

referencing the WiFi-based localization described here with GPS 

data, as 90% of the unique locations described have associated 

GPS positions within the same duty cycle.  This same data could 

also be leveraged against GIS databases to provide detailed 

investigations of situated activity and dining habits or to examine 

how residents of specific neighborhoods utilize services within 

and outside of their neighborhoods.  We would contend that the 

primary impact of this work is the process itself as it has such far-

reaching impacts into many aspects of epidemiology. 

While the overall approach described here has profound 

implications to health research, the data collection and 

simulations only constitute a first step.  The number of 

participants and duration of the study introduce clear selection 

bias, and do not capture longer-term changes in contact dynamics, 

occurring, for example, over the course of different seasons.  

These shortcomings of numbers and duration are common to other 

similar studies [26, 11, 6, 14], and relate to a large extent to the 

infancy of the methodology.  The technical limitations to 

extending our system to a much larger study population are 

surmountable, but the logistics of marshaling thousands of 

participants for longitudinal study would require substantial 

infrastructure and organizational resources.   

A duty cycle-based data collection system can only provide 

samples of reality, and always run the risk of missing data.  As 

aggressive as our data collection was, we are still only capturing 

Bluetooth contacts 20% of the time and WiFi only a fraction of 

that.  We based these numbers on a compromise between 

sensitivity and battery life. Additionally, as noted earlier in the 

paper, non-participant devices only observed once or twice may 

have been proximate to participants at other times but not longer 

in discoverable mode.   

The simulation studies we performed demonstrated a powerful 

combination of agent-based Monte Carlo techniques and contact 

dynamics data, but the examples we provided were highly stylized 

version of flu, and lack ground truth through diagnostics or survey 

data as a consequence of our ethics approval.  Additionally, even 

with the high number of locations we have access to in the data, it 

is certainly not of sufficient resolution to identify individual 

surfaces within a space.  Our spatial probability of infection is 

then a joint probability of the probability that the agent will come 

into whatever surface has been contaminated and the probability 

of infection from the environmental pathogen itself. 

Despite these shortcomings, our technique has delivered 

interesting insight into the role of contact dynamics between 

people and places, and an overall health informatics approach 

which has the potential to fundamentally alter the relationship 

between data and simulation. 

6. FUTURE WORK  

6.1 Data Collection 
The system we have designed employs sensors which are 

commonly embedded in smartphones.  In the future we wish to 

add spot surveys, communications monitoring and better 
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directionality sensing to more fully exploit the available 

smartphone capabilities.  While capturing sound and images is 

also possible using standard smartphone sensors, these modalities 

are even more ethically fraught, and therefore likely best avoided 

unless greater benefit can be demonstrated.  Smartphones can be 

more than just sensor nodes; their local communications 

capabilities and significant processor and memory capacity can be 

leveraged with secondary sensors to capture additional medically 

relevant data such as blood pressure, blood glucose level or even 

weight [31].  Finally, we and others, should expand the scope of 

population under analysis from academic institutions to medical 

institutions and high-risk subgroups of the public at large to better 

understand infections and mitigate against the population bias 

noted in our introduction and results. 

6.2 Data Analysis 
The analysis we have presented in this paper has only scratched 

the surface of the data we already have in hand.  Within this 

paper, we have omitted discussion of two entire sensor modalities 

with potential for greatly informing an understanding of detailed 

behavioral and environmental drivers for health patterns: 

acceleration and GPS position.  When coupled with geographic 

information systems (GIS) these data streams can provide 

powerful insight into the impact of place on activity and by 

extension to chronic diseases such as obesity and diabetes.  We 

can also leverage the significant number of orthogonal data 

streams at our disposal to validate the quality of the data beyond 

battery state analysis.  For example, we could examine 

accelerometer records to determine if the phone was left on a level 

surface for a significant amount of time while not plugged in, to 

seek to isolate those records where the phone was unplugged but 

not on the participant’s person.  Finally, we can use the data 

outside of the medical milieu.  For example, GPS records and 

connectivity data can be analyzed to give powerful insight into 

human mobility and connectivity in the information age. 

6.3 Simulation Studies 
The simulation studies we have described here provide an 

interesting new methodology for leveraging detailed contact data 

over time and place.  However, we used a highly stylized disease 

model as a proof of concept, and additional work should be 

conducted to better understand the sensitivity to disease behavior 

and parameters to understand how dynamic network models 

depart from more traditional aggregate models or network-

embedded agent-based models.  In a similar vein, we seek to 

analyze the impact of temporal aggregation on agent-based 

models to examine the degree of temporal resolution required to 

yield health insight, and at what temporal scales the dynamic 

network resembles a classic aggregate or population level model.  

Finally, we should look at how detailed contact data can be 

replicated through simulation over participants and through time.  

While [26] has made an initial attempt at this leveraging, it is 

unclear whether their or other approaches have sufficient 

empirical or mathematical validity. 

 

7. CONCLUSIONS  
This paper presents the design, deployment and analysis - directly 

and through associated epidemiological models - of a smartphone-

based human contact and mobility data collection system.  We 

have demonstrated the feasibility of the system for data collection, 

identified interesting aspects of human contact dynamics with 

people and places and integrated these findings and data with 

agent-based simulation models, with associated contributions in 

all aspects of our design and analysis.  This work constitutes a 

foundational demonstration of the future of ecologically valid 

epidemiological data collection, and an important first step in the 

understanding of human contact dynamics and health.  In the 

future we intend to push the field forward along the three fronts of 

data collection, analysis and modeling to achieve greater 

understanding of contagion spread through human mobility and 

contact. 
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